skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Backhouse, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Talc is expected to be an important water carrier in Earth's upper mantle, and understanding its electrical and seismic properties under high pressure and temperature conditions is required to detect possible talc‐rich regions in subduction zones imaged using geophysical observations. We conducted acoustic and electrical experiments on natural talc aggregates at relevant pressure‐temperature conditions. Compressional wave velocity (Vp) was measured using ultrasonic interferometry in a Paris‐Edinburgh press at pressures up to 3.4 GPa and temperatures up to 873 K. Similar Vp values are obtained regardless of the initial crystallographic preferred orientation of the samples, which can be explained by talc grain reorientation during the experiment, with the (001) plane becoming perpendicular to the uniaxial compression axis. Electrical conductivity of the same starting material was determined using impedance spectroscopy in a multi‐anvil press up to 6 GPa and 1263 K. Two conductivity jumps are observed, at ∼860–1025 K and ∼940–1080 K, depending on pressure, and interpreted as talc dehydroxylation and decomposition, respectively. Electrical anisotropy is observed at low temperature and decreases with increasing pressure (∼10 at 1.5 GPa and ∼2 at 3.5 GPa). Comparison of acoustic and electrical results with geophysical observations in central Mexico supports the presence of a talc‐bearing layer atop the subducted Cocos plate. 
    more » « less